
Prime Number Encryption

King’s Certificate 2022–23

Mentor

Lloyd Kelly

Authors

Andras Bard Ataera Eyton

Karolina Nguyen Calum Wong

Abstract

Prime number encryption is the backbone of modern society. Its applications
encompass everything from banking and finance to web browsing and instant
messaging. Our article provides an in-depth analysis of prime number encryp-
tion, exploring its origins and history and reflecting on its vulnerability to quan-
tum algorithms in the future. We present our findings on the exciting world of
prime number encryption in an easily digestible format, and we provide a pro-
grammatic implementation of the RSA (Rivest-Shamir-Adleman) cryptosystem
in Python to demonstrate how data can be encrypted and decrypted using prime
numbers, ensuring confidential communication between two parties.

Acknowledgements

We would like to give our thanks to everyone who helped us on the wonderful
journey to writing this paper. We would like to thank Jenny Esslemont, the
King’s Certificate organiser, for her unending encouragement, and for giving
us the opportunity to undertake this research project. We would like to thank
Lloyd Kelly, our mentor from Man Group, for his feedback and support, and for
helping us edit this article. We would like to thank Dr Peter Shor, the inventor
of Shor’s Algorithm, for answering some questions we had about the future of
prime number encryption. We would like to thank Frederick Beale, Ananya
Eshwar, and Joan Pau Jaen Mendoza, the members of the group investigating
spring particle systems, for peer reviewing this paper, and for being all-round
awesome. Finally, we would like to thank our families and friends for always
being there for us, and helping us do our best.

“Can the reader say what two numbers multiplied together will pro-
duce the number 8,616,460,799? I think it unlikely that anyone but
myself will ever know.” – William Stanley Jevons, 1874

1

Contents

1 Introduction 4

2 Literature Review 6

3 Development and Methodology 9

3.1 Roles . 9

3.2 Organisation . 9

3.3 Key Concepts . 10

3.4 Development Strategy . 10

4 Results 11

4.1 Introduction . 11

4.2 Proofs . 11

4.2.1 Euclid’s Theorem . 11

4.2.2 Fermat’s Little Theorem 12

4.2.3 RSA Encryption . 13

4.3 Python Program . 13

4.3.1 Prime Number Generation 13

4.3.2 Key Generation . 14

4.3.3 Encryption . 14

4.3.4 Decryption . 14

4.4 Analysis . 14

4.5 Evaluation . 15

4.6 Conclusion . 15

5 Conclusion 16

2

6 Evaluation 17

6.1 Speed test . 17

6.2 Quantum Computers . 17

6.3 Elliptic Curves . 18

7 Glossary 19

8 References 20

Appendix A Python Program 21

Appendix B Gantt Chart 23

Appendix C RSA Algorithm Example 24

3

1 Introduction

Numbers have been a fundamental cornerstone of human civilisation for mil-
lennia. Ever since we first felt the need to count our fish and measure our
temples, numbers have been essential to our finance, architecture, communica-
tion, medicine, exploration, and innovation [1]. The first numbers we started
using were some of the simplest: the natural numbers. These are the positive in-
tegers obtained by counting 1, 2, 3, Yet even among the seemingly mundane
natural numbers, prime numbers have fascinated mathematicians for centuries.
A prime number has no factors except one and itself, and as a result of this
simple definition, prime numbers can be multiplied together in endless combi-
nations to construct all of the other natural numbers, referred to as composite
numbers. We will later prove the (perhaps intuitive) theorem that there is an
infinite number of prime numbers.

Communication has also been a fundamental cornerstone of human civilisation
for millennia. The sharing of information has enabled us to develop unlike any
other species on the planet (for better or worse). However, perhaps the great-
est problem with sending messages is that they are at risk of being intercepted
and read by unintended recipients. To prevent this, people have invented in-
creasingly complex methods of scrambling messages such that they cannot be
understood by any unauthorised parties. The field of cryptography has de-
veloped to facilitate confidential communication between two parties, forever
immortalised in academic literature as Alice and Bob [2]. Generally, Alice uses
a secret key to encrypt the plaintext she wants to send to Bob, producing a
ciphertext that is unintelligible to anyone without the key. Upon receiving the
ciphertext, Bob can apply the secret key to recover the plaintext. However,
this symmetric-key cryptosystem relies on a critical fact: that Alice had already
shared her key with Bob prior to the entire transaction. This in turn puts the
key at risk of being intercepted and read by unintended recipients, jeopardising
the entire cryptosystem.

The problem of sharing keys is solved by public-key cryptography [3]. In a
public-key cryptosystem, two keys are used instead of one. Importantly, the
two keys are mathematically linked, such that one of the keys can only be used
for encryption, and the other can only be used for decryption. (A useful analogy
is a padlock with two keys, where one of the keys can only turn clockwise to
lock the mechanism, and the other can only turn the anticlockwise to unlock
the mechanism.) The key used for encryption is referred to as the public key,
because it can freely be distributed to the public, allowing anyone to encrypt
messages with it. The key used for decryption is referred to as the private key,
because it should be kept private, so only its owner can decrypt messages with
it. Generally, Alice uses Bob’s public key that everyone knows to encrypt the
plaintext she wants to send to Bob, producing a ciphertext that is unintelligible
to anyone without Bob’s private key (i.e. anyone except Bob). Upon receiving

4

the ciphertext, Bob can apply his private key to recover the plaintext. Note
that they did not need to share keys in secret: Bob shared his public key with
everyone and his private key with no one. But how do we implement this
mechanism? That’s where prime numbers make their entrance to the art of
cryptography.

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman published the RSA
algorithm, a pioneering public-key cryptosystem which generates strong keys
using a prime number trapdoor function [4]. (It is relatively easy for a com-
puter to quickly multiply two numbers, but relatively hard for a computer to
quickly factorise a number into its prime factors.) This makes it very easy to
encrypt messages but extremely difficult to decrypt messages without knowing
the private key. This method of encryption is used today in messaging apps
such as Telegram to encrypt messages that are sent between devices securely
and easily. RSA is also used to encrypt the keys for a symmetric-key cryptosys-
tem facilitating secure Internet connections. With RSA being so important to
cryptography and with technology at the center of our world, it is imperative
that the system remains secure. In this paper, we will explore how RSA works
in detail, analyse why it has worked so well for so long, and speculate how it
might be affected by the advent of quantum computers.

This paper provides a deep dive into the RSA cryptosystem — as well as pro-
viding our own implementation in Python — and discusses the future of the
technology in the age of quantum computing. We hope that this paper con-
tributes to the knowledge of the reader.

5

2 Literature Review

Prime numbers have been documented by mathematicians as far back as Eu-
clid’s Elements [5]. The RSA algorithm, published in 1977, marked a seismic
shift in the use of prime numbers by moving them from the world of abstract
number theory to centre stage at the cornerstone of modern cryptography [4].
We reviewed a range of different literature, ranging from overviews of prime
numbers to in depth analyses of the RSA cryptosystem.

We began our research by looking at an overview of prime numbers in general.
One of the leading pieces of literature for this is Marcus du Sautoy’s The Mu-
sic of the Primes [6]. In this book, du Sautoy describes how mathematicians
are searching for a formula to describe the distribution of prime numbers. He
documents the research conducted by Bernhard Riemann in the 19th Century,
highlighting why the Riemann hypothesis on the distribution of primes remains
unsolved to this day. Riemann’s research focused on trying to derive a formula
for the primes. Chapter 4 of The Music of the Primes was especially useful
to our research topic, as it helped to explore how graphs could represent the
distribution of primes. Moreover, the book elaborates how primes appear in
fields ranging from music to nature. The book also explains that there are in-
finite prime numbers, which can be proven with Euclid’s Theorem of Infinite
Primes. This book formed the basis of our research when analysing prime num-
bers; it shows how prime numbers are represented, highlights their importance
and explains why we are yet to find a way to describe their exact sequence.

After learning why there is no perfect formula for primes, we decided to inves-
tigate how they can still be generated efficiently. We reviewed the proceedings
from the International Workshop on Cryptographic Hardware and Embedded
Systems [7]. In these proceedings, Joye et al. give methods of generating ran-
dom prime numbers efficiently and efficient ways of checking if numbers are
prime. More specifically, their research focuses on creating a new algorithm for
generating pseudo-random numbers with no small factors. The main limitation
of these proceedings was that the theories discussed may be too advanced, given
that less efficient but simpler ways to generate prime numbers are readily avail-
able. This research did not form the basis of our project, but it provided useful
insights into how to efficiently generate prime numbers.

Content with our understanding of prime numbers, we moved on to studying
the history of encryption. The Code Book by Simon Singh is a book about
the history of codes and code-breaking [2]. This book begins with early ciphers,
progressing to the history of the RSA cryptosystem in later chapters. This book
was very useful to our research, as it lays out the broad history of codes and the
mathematics behind them, providing good examples for each cipher. The only
limitation of this book was that not all of the ciphers mentioned are relevant to
prime numbers. Nevertheless, this book provides an insightful introduction to

6

RSA encryption and formed the basis of our research.

Before investigating the RSA algorithm, we read a paper titled New directions in
cryptography by Whitfield Diffie and Martin Hellman [3]. In this paper, Diffie
and Hellman explore the revolution in cryptography over the years. Firstly,
they define the best known cryptographic problem: privacy - “preventing the
unauthorized extraction of information from communications over an insecure
channel”. This problem can be solved by sending keys through a secure channel
and the main body of the message through the insecure channel. In further
sections they consider approaches to transmit key information through public
channels. The authors also discuss trapdoor functions, which are easy to com-
pute in one direction, yet difficult to compute in the opposite direction. Diffie
and Hellman emphasise throughout the paper that “secrecy is at the heart of
cryptography”. The article perfectly showcases the revolutionary perspective on
cryptography over the years alongside presenting various methods and imple-
mentations. Therefore this paper formed the basis of our research, as it deeply
explores the importance of cryptography as well as why it is widely used.

Next, we decided to analyse the original research paper written by the inventors
of the RSA algorithm: Ronald Rivest, Adi Shamir and Leonard Adleman [4].
In this article Rivest et al. describe a new cryptosystem that makes it possible
to share encryption keys without revealing the corresponding decryption keys.
The authors use a “trap-door one-way function” of prime numbers to eliminate
the need to transmit encryption keys through a secure messenger, instead al-
lowing them to be shared publicly. Their research focuses on finding such a
function, first proposed by Diffie and Hellman, to propose a ground-breaking
new cryptosystem [3]. This article was extremely useful to our research topic,
as we are researching prime numbers as well as the RSA algorithm. The main
limitation of the article was that it was one of the first public key cryptosystems,
thus the authors indicated that more research is needed to verify the proposed
security of such a system. (Indeed, in the 44 years since the article’s publication,
no known methods of defeating the system have been found, if a large enough
key is used.) This article formed the basis of our research; it has lots of useful
information on how prime numbers can be used to encrypt messages.

Finally, to further deepen our understanding of prime number encryption, we
read an educational worksheet by Kathryn Mann, an assistant professor of math-
ematics at Cornell University [8]. The worksheet details the role of prime num-
bers in public-key encryption, as well as explaining the mathematics behind the
RSA algorithm. It also identifies several problems with symmetric-key encryp-
tion, namely the difficulty of rotating keys and the threat of secret keys being
intercepted by a third party. We found this worksheet to be an very trustworthy
source, as it is intended to educate the reader, and it was recommended to us by
our mentor. Overall, this worksheet formed the basis of our research, because
we learned a lot of key information from it.

7

We have successfully examined the significance and main contribution of prime
numbers in prime number encryption [2], especially RSA algorithm which we
further researched in RSA paper [4]. Prime numbers are the fundamentals of all
numbers and cannot be further simplified unlike composite numbers. This was
proven to be beneficial as in case of any interception, the key will remain secure
as it cannot be easily derived from either public key or encrypted messages [8].
We also looked at generating random prime numbers for the RSA algorithm and
made a simple random prime number generator [7]. We have thoroughly looked
at how throughout time people have observed and tried to formulate a pattern
for the generation of primes [6].

8

3 Development and Methodology

3.1 Roles

Although we did not explicitly assign roles at the beginning of the project, each
member of our group ended up leading some aspect of the research.

• Andras organised the group’s meetings, set internal deadlines and co-wrote
the program. He also spent most time in perfecting the article and taking
care of any correspondence. He made sure to keep the group connected
on various collaborative platforms.

• Ataera researched the generation of large prime numbers, implemented
an efficient algorithm in Python, and did some research on the history of
RSA. He also read the Code Book, which contributed to this article.

• Karolina researched quantum computing to evaluate the effectiveness of
RSA encryption, including how Shor’s algorithm could be implemented
and corresponded with Dr Peter Shor. She also researched Elliptic Curve
Cryptography and the Riemann Hypothesis.

• Calum wrote much of the introduction and literature review. He also
provided rigorous proofs of Euclid’s Theorem of Infinite Primes, Fermat’s
Little Theorem, and the RSA cryptosystem.

We met every Tuesday after our King’s Certificate lesson to plan tasks and
conduct research for one hour.

We met every Friday afternoon at King’s College London’s Franklin-Wilkins
Library to work on the Python program, obtain results and typeset this paper
in LATEX for a further three hours.

3.2 Organisation

We created a Gantt chart using Microsoft Excel to organise our work on this
project. A snippet of this chart is shown in Figure 1, while the full chart can
be found in Appendix B. We communicated with each other via a WhatsApp
group to ensure that we consistently met all of our deadlines.

We created a shared notebook using Microsoft OneNote to keep track of aca-
demic literature, meeting agendas, success criteria for each stage for the project,
and drafts of each section of this paper.

9

https://www.microsoft.com/en-gb/microsoft-365/excel
https://www.whatsapp.com/
https://www.microsoft.com/en-gb/microsoft-365/onenote

Figure 1: A snippet of the Gantt chart used to organise our work on this project.

We created a shared LATEX document using Overleaf to collaborate online, ag-
gregate references, and regularly save our progress using version control.

3.3 Key Concepts

As a result of reading literature surrounding the topic we have developed our
understanding of the generation of random prime numbers and how the unique
properties of prime numbers is what facilitates the security of prime number
encryption. Discovering the two prime numbers becomes exponentially more
difficult the greater the prime numbers used are.

During our literature review, we learned about what prime numbers are, their
significance in encryption, and how to generate them efficiently [7]. Then we
focused on the RSA algorithm, investigating how prime numbers can be used
to create a one-way trapdoor function [4].

3.4 Development Strategy

To begin, we will prove essential theorems such as Euclid’s theorem of infinite
primes and Fermat’s little theorem, which will form the basis to our prime num-
ber generation program. Using the generated primes, we can make a public and
private key, and implement them into both encryption and decryption programs
to convert back and forth from the plaintext to the ciphertext. We will also dis-
cuss any possible limitations of our algorithms and how they might be exploited,
for example with quantum computing, and show how Shor’s algorithm could be
used to do this.

10

https://www.overleaf.com/

4 Results

4.1 Introduction

Our goal for this section was to demonstrate the effectiveness of the RSA algo-
rithm, and implement the encryption technique using prime numbers we have
generated in Python [4]. In order to do this, we first proved some useful the-
orems: Euclid’s Infinitive Prime Theorem, as well as Fermat’s Little Theorem.
Afterwards, we developed a program which generates random prime numbers
with a bit length specified by the number inputted. Once these primes are
generated, we can use them in our encryption program, which uses the RSA
encryption algorithm, to convert plaintext into ciphertext. Alongside the en-
cryption program, we have designed a corresponding decryption program which
will convert ciphertext back into plaintext.

The final Python program can be found in Appendix A. An interactive demo
can be found online at Replit, an online program editor.

4.2 Proofs

4.2.1 Euclid’s Theorem

Euclid’s Theorem of Infinite Primes states that there is an infinite number of
prime numbers. This can be proven in the following way:

Consider a list of all prime numbers in increasing order, assuming that there is
a finite number of them.

p1, p2, p3, . . . pn

Let P be the product of all the prime numbers in this list:

P = p1p2p3 . . . pn

Let q = P + 1.

If q is not prime, then some prime number is a factor of q. However, because q
is one more than a multiple of every prime number in our list, it is not divisible
by any prime in our list, so it must be divisible by another prime, outside of our
list, so our list does not contain all the prime numbers.

11

https://replit.com/@AndrasBard/PrimeNumberEncryption

If q is prime, then it is also not in our list, as it is higher than the last prime
in our list. Therefore, it is shown that our list does not contain all the prime
numbers.

By contradiction, it is proven that there is an infinite number of prime numbers.

4.2.2 Fermat’s Little Theorem

Fermat’s little theorem states that any number a raised to the power of any
prime p gives a remainder of a when divided by the prime p.

ap = a (mod p)

This can be proven by induction.

The base case occurs when a = 1. We know that

1p = 1 (mod p)

For the inductive hypothesis, assume that ap = a (mod p) for some integer a.
The goal is to show that (a+ 1)p = a+ 1 (mod p).

The left hand side can be expanded by using the binomial theorem:

(a+ 1)p = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + · · ·+

(
p

p− 1

)
a+ 1

We know that
(
p
k

)
= p!

k!(p−k)! . We can see that p divides the numerator, i.e.

p | p!. We can also see that p does not divide the denominator, i.e. p ∤ k! and
p ∤ (p− k)!. Therefore p |

(
p
k

)
for 1 < k < p− 1.

So the terms in the middle are equal to 0 (mod p), reducing the left hand side
to

(a+ 1)p = ap + 1 (mod p)

By substituting ap = a (mod p) from the inductive hypothesis, we have (a+1)p =
a+ 1 (mod p), which is equal to the right hand side.

By induction, Fermat’s Little Theorem holds for all positive integers.

12

4.2.3 RSA Encryption

Given two prime numbers p and q, and a public key e co-prime to (p−1)(q−1),
the RSA algorithm computes the private key d such that ed ≡ 1 mod (p −
1)(q − 1). The product n = pq is also released with the public key.

During encryption, the ciphertext is computed using c ≡ me mod n. During
decryption, the plaintext is computed using m ≡ cd mod n. We will now
use Fermat’s Little Theorem and modular arithmetic to prove why m ≡ med

mod n, i.e. why RSA works.

Since ed ≡ 1 mod (p− 1)(q− 1), we can write ed− 1 = h(p− 1) = k(q− 1) for
some non-negative integers h and k.

To prove that m ≡ med mod pq, it is sufficient to prove that m ≡ med mod p
and m ≡ med mod q. If m−med is divisible by p and it is also divisible by q,
then it must be divisible by pq.

If m ≡ 0 mod p, then med ≡ 0 mod p. So m ≡ med mod p.

If m ̸≡ 0 mod p, then med = med−1m = mh(p−1)m = (mp−1)
h
m.

Fermat’s Little Theorem states that mp ≡ m mod p, so mp−1 ≡ 1 mod p.

Using this, (mp−1)
h
m ≡ 1hm ≡ m mod p.

This proves that m ≡ med mod p.

Using similar logic, we can prove that m ≡ med mod q.

Therefore m ≡ med mod n, so the RSA algorithm works.

4.3 Python Program

4.3.1 Prime Number Generation

First, the function takes a number n which will form the length in bits for the
generated prime number. Then, it iterates through a loop checking whether
a randomly generated odd number is co-prime with the small prime numbers
up to 29, i.e. if it is not divisible by any of the first few prime numbers. If it
passes the verification, it moves on to the following branch and iterates through
dividing the large random number, “big” by all the prime numbers up to the
square root of the number. If it finds no factors of “big”, it returns it, and the
resulting number should be prime. If, however, it finds a factor, the loop exits
and tries a number which is greater than the previous value of “big” by 2. This

13

is because, the next possible prime number would be 2 spaces up, meaning it
would need to be odd, as even numbers share a common factor of 2.

4.3.2 Key Generation

To begin, the function generates two 48-bit prime numbers using the generate
prime function (see above), which are assigned to p and q. If p and q are equal,
then q is generated again to ensure that p and q are two unique prime numbers.
n is set to p∗q, and ϕ is set to (p−1)∗ (q−1) which therefore makes ϕ co-prime
with n. It then generates a random number e, not higher than ϕ, that is co-
prime to ϕ. It then creates d through taking a modular multiplicative inverse of
e. This means choosing d such that ed ≡ 1 mod ϕ. The public key is (n, e) and
the private key is (n, d). The keys are now ready to be used in both encryption
and decryption for secure data transfer.

4.3.3 Encryption

Before a message can be encrypted using the RSA algorithm, it needs to be
converted to a number. This is accomplished using the encode function, which
converts each letter to its corresponding ASCII code. For example: ‘h’ has the
code = 104 (1101000 in binary).

To encrypt the resulting number, we raise it to the power of e modulo n.

4.3.4 Decryption

To decrypt the ciphertext, we raise it to the power of d modulo n.

Before the resulting message can be read, it needs to be converted back to
letters. This is accomplished using the decode function, which converts each
ASCII code to its corresponding letter.

4.4 Analysis

The Python program is a demonstration of the RSA algorithm which utilises the
ideas used in Fermat’s little theorem and Euclid’s theorem of infinite primes to
generate large primes used for private and public keys. This then demonstrates
encryption and decryption using the RSA algorithm. The program can quickly
generate primes up to 48 bits long.

14

4.5 Evaluation

Our code has successfully shown the ability to generate large prime numbers
(to specified length of bits) which are then used to implement RSA encryption
[4]. In order to break RSA encryption; prime factors of a product number must
be found to derive the private key, and therefore obtain the original message.
This is however rather challenging if the product is significantly large, as it can
contain multiple pairs of prime factors which is incredibly time consuming thus
inefficient. Nevertheless, prime factorization could be improved in terms of time
using Shor’s algorithm - developed by Dr Peter Shor [9]. Shor’s algorithm trans-
forms an initial possible prime factor guess into a more reliable possible prime
factor. In conjunction with quantum computers, it contains enough power to
potentially break RSA. Therefore, it does raises concerns and further implica-
tions to our project. Nonetheless, as long as generated and implemented prime
numbers are relatively large, issues should be temporarily eliminated.

4.6 Conclusion

To summarise, we have proven both Euclid’s Infinitive Prime Theorem as well as
Fermat’s Little Theorem. These theorems were then used in our development of
a prime number generation and encryption program. All messages with suitable
length (up to 48 bits) are successfully encrypted and decrypted while preserving
the original information. The main limitation is the power and efficiency of our
program as only message up to 48 bits can be successfully converted. In the
future however, we are planning to expand our program so that message of larger
length can be passed into the algorithms. One of the processes adapted could be
splitting the message into smaller segments of 48 bits (or less) to be encrypted
and decrypted separately and concatenated at the end when displaying the
original message.

15

5 Conclusion

Throughout this paper, we developed a deeper understanding of prime numbers,
cryptography, RSA encryption, and its dependence on the difficulty of factoring
large prime numbers. We researched various topics in relation to cryptography
and previously proven theorems, using the applied knowledge to design a Python
program to implement the RSA algorithm.

Through reviewing previous work of scholars surrounding the use of RSA, we
learned more about their research and gained insight into why it works so well
and why it has retained its functionality over time. Understanding of why prime
numbers are best suited for encryption was pivotal in understanding why the
encryption method remains so practical to this day.

We believe this research will be useful to understand the limitations of RSA
and what are the risks as quantum technology advances. To understand this,
we studied the process of how modular arithmetic is used in the process of RSA.
We also studied how a core part of the effectiveness of RSA is from the unique
properties of prime numbers. We achieved this by proving Fermat’s last theorem
and Euclid’s theorem of infinite primes. We investigated Shor’s algorithm that
aims to factor a number into its primes. We began exploring the use of quantum
computers to gain insight into limitations of Shor’s algorithm to gain insight into
the limitations of RSA.

From gaining understanding of how the algorithm works we managed to produce
a Python program that is representative of the process a message undergoes both
decrypting and encrypting a message using RSA.

16

6 Evaluation

6.1 Speed test

Bit length Average time (s)
32 0.03
40 0.5
48 7

Table 1: Speed test of the Python program in Appendix A.

Table 1 shows a speed test of our final program. The bit length shows the
number of bits required to store each prime number. The average time shows the
how long the program took to run over 10 tests. The speed test was conducted
on an Apple M1 system on a chip with 8 GB RAM.

6.2 Quantum Computers

The main threat to the perfect security offered by RSA encryption is quantum
computers implementing Shor’s algorithm [9]. This algorithm, developed by
Dr Peter Shor in 1994, can be used to factor integers into their prime factor
components. This algorithm is highly reliable as it is probabilistic - results
have a high probability of success while probability of failure can be lowered by
repeating the algorithm. As a hybrid algorithm, it is separated into two parts:
reduction of the factoring problem into problem of order finding (can be done
on a classical computer), and solving the problem of order finding (algorithm
implemented on a quantum computer).

Below is a simplified description of the algorithm:

1. Let the large integer that we want to factor be N .

2. Pick a guess for potential factor, k, which is less than N .

3. Find the greatest common divisor of k and N .

4. If gcd(k,N) ̸= 1, then we have found a factor of N ; however, if it is equal
to 1 then we need to use a quantum subroutine that finds the period, r,
such that if f(x) = kx mod N , then f(x) = f(x+ r) .Note: this subrou-
tine implements a quantum algorithm using log(2N) qubits to solve the
problem, however we will not discuss further details of how this subroutine
works as it is not the main focus of this paper. This algorithm will be slow
for a classical computer, but extremely fast for a quantum computer.

17

5. If r is odd, then repeat from step 1.

6. If k
r
2 = −1 mod N , then repeat from step 1.

7. The factors of N are gcd(k
r
2 ± 1, N).

We emailed Dr Shor about the future of quantum computing and prime factori-
sation. Currently, quantum computers do not have enough qubits to factorise
large prime numbers, and thus break the RSA cryptosystem. This is because
“quantum gates are too noisy to run full scale fault tolerance on quantum com-
puters”. It is really hard to shield quantum gates from noise from the outside
world. However, the field of quantum computing is rapidly developing, and it
is “reasonably likely” that breakthroughs in the next 20 years could make it
possible to execute Shor’s Algorithm on quantum computers, although “it is
really hard to predict the progress of technology” [10].

6.3 Elliptic Curves

Elliptic curve cryptography (ECC) is a popular public-key cryptosystem. Sim-
ilarly to RSA, it uses public and private keys and, critically, depends on prime
numbers. However, it provides a higher level of security for the same key size,
thus making it more effective. Furthermore, unlike RSA, ECC can offer a per-
fect trapdoor due to the elliptic curve discrete logarithm problem over finite
fields. Dr Neal Koblitz is an independent co-creator of elliptic curve cryptogra-
phy alongside his partner Dr Victor Miller [11]. They suggest using an elliptic
curve that is a set of solutions (x, y) for the equation

y2 = x3 + ax+ b

Each x value has 2 corresponding y values which are symmetrical about the
x-axis, and any line will not intersect the curve in more than 3 points. To
begin encryption, a starting point A on a curve is picked. Then, tangents are
repeatedly drawn to find new points on the curve.

Overall, ECC is an alternative to RSA encryption, which provides a more perfect
trapdoor function, but can be slower to execute than RSA.

18

7 Glossary

Natural number A positive integer.

Prime number A number with no factors other than one and itself.

Co-prime Two numbers that share no factors other than one.

Cryptography The field of confidential communication techniques.

Encryption The process of making data unintelligible to parties
without the key.

Decryption The process of making encrypted data intelligible again
using the key.

Plaintext The original message that can be read by anyone.

Ciphertext A secret message that can only be read by parties with
the key.

Cryptosystem A specific set of algorithms used for encryption and de-
cryption of data.

Symmetric-key
cryptosystem

A cryptosystem that uses the same key for encryption
and decryption of data.

Public-key
cryptosystem

A cryptosystem that uses different keys for encryption
and decryption of data.

RSA A public-key cryptosystem named after its inventors:
Ron Rivest, Adi Shamir and Leonard Adleman.

Python A high-level, general-purpose programming language
created by Guido van Rossum in 1991.

ASCII The American Standard Code for Information Inter-
change, used to convert letters to binary numbers for
use in computing.

Trapdoor A function that is easy to compute in one direction, yet
difficult to compute in the opposite direction.

19

8 References

[1] Knott R. The Development of Number Systems. Mathematics in
School. 1979;8(4):23-5. Available from: https://www.jstor.org/stable/
30213485.

[2] Singh S. The Code Book: The Secret History of Codes and Code-Breaking.
Fourth Estate; 1999.

[3] Diffie W, Hellman M. New directions in cryptography. IEEE Transactions
on Information Theory. 1976;22(6):644-54. doi:10.1109/TIT.1976.1055638.

[4] Rivest RL, Shamir A, Adleman L. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Communications of the ACM.
1978;21(2):120-6. doi:10.1145/359340.359342.

[5] Euclid. Elements. Alexandria, Ptolemaic Egypt: Euclid; 300 BC. Available
from: https://mathcs.clarku.edu/~djoyce/java/elements/toc.html.

[6] du Sautoy M. The Music of the Primes: Why an Unsolved Problem in
Mathematics Matters. Fourth Estate; 2003.

[7] Joye M, Paillier P, Vaudenay S. Efficient Generation of Prime Numbers.
In: Koç ÇK, Paar C, editors. Cryptographic Hardware and Embedded
Systems — CHES 2000. Berlin, Heidelberg: Springer Berlin Heidelberg;
2000. p. 340-54. doi:10.1007/3-540-44499-8 27.

[8] Mann KP. The science of encryption: prime numbers and mod n arithmetic.
The Atlantic; 2011. Accessed: 2022-12-06. https://math.berkeley.edu/

~kpmann/encryption.pdf.

[9] Shor PW. Algorithms for quantum computation: discrete logarithms and
factoring. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science; 1994. p. 124-34. doi:10.1109/SFCS.1994.365700.

[10] Shor PW. Email correspondence; 2023.

[11] Koblitz N. Elliptic Curve Cryptosystems. Mathematics of Computation.
1987;48(177):203-9. Available from: https://www.jstor.org/stable/

2007884.

20

https://www.jstor.org/stable/30213485
https://www.jstor.org/stable/30213485
https://dx.doi.org/10.1109/TIT.1976.1055638
https://dx.doi.org/10.1145/359340.359342
https://mathcs.clarku.edu/~djoyce/java/elements/toc.html
https://dx.doi.org/10.1007/3-540-44499-8_27
https://math.berkeley.edu/~kpmann/encryption.pdf
https://math.berkeley.edu/~kpmann/encryption.pdf
https://dx.doi.org/10.1109/SFCS.1994.365700
https://www.jstor.org/stable/2007884
https://www.jstor.org/stable/2007884

Appendix A Python Program

'''

Python program to implement RSA encryption.

By Andras Bard, Ataera Eyton, Karolina Nguyen, and Calum Wong.

King's Certificate 2022-23.

'''

import random

import math

def _encode(message):

number = 0

for x in message:

number = number << 8

number += ord(x)

return number

def _decode(number):

message = ""

while number > 0:

x = number % 256

message = chr(x) + message

number = number >> 8

return message

def _fast_exponent_modulo(a, b, n):

return pow(a, b, mod=n)

def _generate_prime(n):

small_primes = 2*3*5*7*11*13*17*19*23*29

large = 2

while math.gcd(large, small_primes) != 1:

large = random.randint((2**(n-1)), 2**n)

while True:

isPrime = True

for i in range(3, (int(round(large ** 0.5))) + 1, 2):

temp = large % i

if temp == 0:

isPrime = False

break

if isPrime == True:

return large

else:

large = large + 2

21

def generate_keypair():

p = _generate_prime(48)

q = _generate_prime(48)

while p == q:

q = _generate_prime(48)

n = p * q

phi = (p-1) * (q-1)

e = random.randrange(1, phi)

while math.gcd(e, phi) != 1:

e = random.randrange(1, phi)

d = _fast_exponent_modulo(e, -1, phi)

public_key = (n, e)

private_key = (n, d)

return public_key, private_key

def encrypt(plaintext, public_key):

n, e = public_key

m = _encode(plaintext)

if m >= n:

raise ValueError('Plaintext is too long')

c = _fast_exponent_modulo(m, e, n)

ciphertext = c

return ciphertext

def decrypt(ciphertext, private_key):

n, d = private_key

c = ciphertext

m = _fast_exponent_modulo(c, d, n)

plaintext = _decode(m)

return plaintext

if __name__ == '__main__':

public_key, private_key = generate_keypair()

ciphertext = encrypt('PRIME NUMBER', public_key)

print(ciphertext)

plaintext = decrypt(ciphertext, private_key)

print(plaintext)

22

Appendix B Gantt Chart

23

Appendix C RSA Algorithm Example

This is a worked example of the RSA algorithm at work with small primes.

First, we choose 2 prime numbers. We will use p = 3 and q = 5. Next, we
compute n = p × q = 15, and ϕ = (p − 1) × (q − 1) = 8. Next, we choose a
number e co-prime with ϕ. We choose e = 7.

Next, we find a number d such that ed = 1 mod n. In other words, 7d should
give a remainder of 1 when divided by 8. The lowest such number d is 7, as
7× 7 = 49, which is 1 more than 48 = 8× 6.

We have now generated the public key (n, e) and the private key (n, d). At this
stage, p, q and ϕ are no longer needed and should be destroyed to eliminate
the risk of attackers using them to find the private key. The public key can be
released to the public, and the private key must be kept secret.

We can now use the public key to encrypt plaintext. We will encrypt the letter
H. First, we convert it to a number by finding its position in the alphabet. Our
plaintext becomes the number 8.

Next, we encrypt this number by calculating 8e mod n = 87 mod 15 = 2. Note
that we only used the public key (n, e), meaning this step can be performed by
anyone.

At this point, the ciphertext 2 can be transmitted to the intended recipient.

We can now decrypt this number by calculating 2d mod n = 27 mod 15 = 8,
a familiar number. Note that we only used the private key (n, d), meaning this
step can only be performed by the intended recipient.

Next, we convert the number back into a letter by finding the 8th letter of the
alphabet. Our resulting plaintext is the letter H. We have successfully recovered
the original plaintext.

Note that the algorithm for encryption and decryption is very similar, with
exponents of e and d used respectively.

24

	Introduction
	Literature Review
	Development and Methodology
	Roles
	Organisation
	Key Concepts
	Development Strategy

	Results
	Introduction
	Proofs
	Euclid's Theorem
	Fermat's Little Theorem
	RSA Encryption

	Python Program
	Prime Number Generation
	Key Generation
	Encryption
	Decryption

	Analysis
	Evaluation
	Conclusion

	Conclusion
	Evaluation
	Speed test
	Quantum Computers
	Elliptic Curves

	Glossary
	References
	Appendix Python Program
	Appendix Gantt Chart
	Appendix RSA Algorithm Example

